
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Branch and Bound Algorithm to Determine The Best
Route to Get Around Tokyo

Muhammad Iqbal Sigid - 13519152
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: sigid.iqbal123@gmail.com

Abstract—This paper described using branch and bound
algorithm to determined the best route to get around six selected
places in Tokyo, modeled after travelling salesman problem. The
bound function used is reduced cost matrix using manual
calculation and a python program to check the solution.

Keywords—TSP, pathfinding, Tokyo, BnB

I. INTRODUCTION

Pathfinding algorithm is used to find the most efficient
route between two points. It can be the shortest, the cheapest,
the faster, or other kind. Pathfinding is closely related to the
shortest path problem, graph theory, or mazes. Pathfinding
usually used a graph as a representation. The nodes represent a
place to visit and the edges represent the nodes connectivity.
There are a lot of algorithm to do pathfinding and the most
basic one is through exhaustive search, which explore each
possible way until the goal is found. One of the most famous
pathfinding algorithms is Dijkstra’s algorithm.

Pathfinding usually used in real life, but it can also be
applied to other stuff, such as video games. In real life,
pathfinding can be used to find the fastest a route to a
destination. This can be combined with GPS to make it easier
to use for people, like in Google Maps for example. The same
goes for video games, but because video games have a pixel-
based maps, pathfinding in video games can be difficult. To
solve that, they use hierarchical path. In this paper, I will be
using pathfinding to determine the best route to get around
Tokyo.

II. FUNDAMENTAL THEORIES

A. Branch and Bound Algorithm

Fig. 1. State Space Tree example for Branch and Bound Algorithm (Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-

Branch-and-Bound-2021-Bagian1.pdf accessed May 8, 2021)

Branch and Bound is an algorithm design which are usually
used to solve discrete and combinatorial optimization
problems. Branch and bound uses state space tree by expanding
its nodes (subset of solution set) based on the minimum or
maximum cost of the active node. There is also a bound which
is used to determine if a node can produce a better solution
than the best one so far. If the node cost violates this bound,
then the node will be eliminated and will not be expanded
further.

Branch and bound algorithm is quite similar to Breadth
First Search (BFS) algorithm with least cost search. BFS
algorithm expand its tree based on the order of the active node.
Apply least cost search to BFS and it will expand its tree based
on the least cost of the active nodes, which is similar to Branch
and Bound. The difference being BnB has a bound which
makes it more efficient depending on how the bound is
calculated. BnB is also similar to A* algorithm on how it
expands based on the minimum cost, but A* doesn’t search for
other possibility once it reached a goal node.

Here is a more structural explanation on how branch and
bound algorithm works.

1. Each node is given a cost c(i), where c(i) is a heuristic
value of the cost to travel through node i to the goal
node.

2. Expand the least cost among all the active node costs.
Active nodes are the nodes that are connected to the
expanding node.

3. If a goal node is found, eliminate all the active node
with the cost bigger than the current goal node cost. If
there is still an active node, continue expanding it.

4. Repeat step 3 until one goal node is found and there’s
no active node available left.

As mentioned before, BnB has a bound function which is
used to eliminate nodes that seems unfitting for the best
solution. It also differentiates BnB with another algorithm.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

B. Travelling Salesman Problem

Fig. 2. Travelling Salesman Problem illustration (Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-
Brute-Force-(2021)-Bag1.pdf accessed May 8, 2021)

Travelling Salesman Problem is a mathematical problem
which ask the question “Given a list of cities and the distances
between each pair of cities, what is the shortest possible route
that visits each city exactly once and returns to the origin city?”

This problem is commonly used as a benchmark for many
optimization methods. There are many solutions to TSP,
however not all solution algorithm is efficient enough to use.
For example, TSP can be solved using exhaustive search
algorithm which explore all the possible combination of
solutions then comparing it with each other. This method
guarantees the best solution, but the more city in the problem,
the worse the algorithm gets. The complexity for exhaustive
search to solve TSP is O(n!) for n cities. One of the efficient
algorithms to solve TSP is branch and bound algorithm.

C. TSP using Branch and Bound

There are a number of methods on using branch and bound
algorithm to solve TSP. In this paper, we will be using reduced
cost matrix method. The matrix contains the cost to travel from
one node to another. Here are the steps to solve it.

1. Form the cost matrix which represent the connection
between each node and the cost to travel between each
node. If two nodes aren’t connected, then fill it with
infinity (∞).

2. Reduce the matrix’ row and column to form reduced
matrix by subtracting each row and column with the
least value. The matrix is reduced one every row and
column has at least one zero. The sum of the
subtrahend is the cost of the root node.

3. Given reduced matrix A is for node R and S is branch
of node R. For each node connected to the starting
node, do this to reduced matrix A.

a. Change the value in row R and column S into
infinity

b. Change (S,1) into infinity.

c. Reduced the matrix again.

d. The minimum cost through node S is equal to

with r = sum of subtrahend

4. From the active nodes, choose one node which has the
minimum cost and expand it by doing step 3 again.

5. If a goal node is reached, in this case when there’s no
more node to expand, eliminate all the other node that
has a bigger cost than the goal node cost. If there is still
an active node left, expand it. Repeat until there’s no
active node left except the solution.

D. Tokyo

Fig. 3. Tokyo City (Source : https://www.japan-guide.com/e/e2164.html

accessed May 9, 2021)

Tokyo is the capital city of Japan and one of the most
populous area in Japan, consisting of 23 central city wards.
Tokyo offers a lot of choices of shopping, entertainment,
culture, and dining to its visitors. The Shibuya district for
example, has a lot of shopping and dining place, while the
Asakusa district has museum, historic temple, and garden.
Tokyo also has a great subway system which is a really
convenient way to get around the city, both for locals and
tourists.

III. SOLVING THE PROBLEM

A. Picking the Locations

As stated in the previous section, Tokyo is a large area so
it’s impossible to cover every location in this problem. With
that, I chose six of its famous locations based on japan-
guide.com, which consists of these places.

1. Asakusa, shortened to ASA

2. Shibuya, shortened to SHB

3. Shinjuku, shortened to SHJ

4. Ginza, shortened to GNZ

5. Akihabara, shortened to AKB

6. Ikebukuro, shortened to IKB

There are other famous places, but to simplify on solving
the problem, I decided to keep it as six. The other reason for
choosing these six places is because all six of them has a quite
a large station. Because all six of these places are an area, not a
specific location, I chose each of its station as their specific
location. Reason being, it makes it easier to calculate the costs
of travel to and from each of the locations.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Fig. 4. Map of Tokyo with six chosen places (Source : Google Maps taken
May 9, 2021)

B. Gathering the Cost

The are two types of cost we will be using. First, the cost of
time and second, the cost of money. Because there are several
ways to travel between each place. I chose one method of
travel, which is by subway or train. The reason why I chose
train is because It’s one of the fastest ways to travel around the
city and a really convenient one.

The railway map for Tokyo area is really complicated to
look at, and so I made a simplified version which includes the
six places that were mentioned.

Fig. 5. A simplified tokyo railway map of six stations

Due to the limitation of taking the data myself, I used the
information that I can get on the internet. For the time cost, I
used Google maps estimation time to and from each station.
The data isn’t entirely accurate, but based on my experience
it’s still fairly accurate. There are several alternatives, so I used
the least estimation time out of all the option on google maps,
and here is the result.

ASA SHB SHJ GNZ AKB IKB

ASA ∞ 33 25 18 13 27
SHB 33 ∞ 7 16 22 11
SHJ 25 7 ∞ 17 13 7
GNZ 18 16 17 ∞ 10 19
AKB 13 22 13 10 ∞ 20
IKB 27 11 7 19 20 ∞

Fig. 6. Cost matrix to travel between six places in Tokyo based on the time it
takes. Taken May 9, 2021. All value is in minutes.

Based on google estimation time, the time to and from one
place to another is slightly different. To simplify this, I made
the time to and from each place to be equal.

For the price cost, I will be using Tokyo Metro train fare.
Each origin station has its own price to a certain destination.
Usually train fare map is available on every station, but Tokyo
Metro has a website to calculate train fare as well as the route it
takes. Based on that website, I got the following data.

ASA SHB SHJ GNZ AKB IKB
ASA ∞ 250 250 200 170 250
SHB 250 ∞ 170 200 200 200
SHJ 250 170 ∞ 200 200 170
GNZ 200 200 200 ∞ 170 200
AKB 170 200 200 170 ∞ 250
IKB 250 200 170 200 250 ∞

Fig. 7. Cost matrix to between six places in Tokyo based on train fare. Taken
May 9, 2021. All value is in yen.

All of these fares are adult ticket prices. For children, they
are half priced which makes it the same scale. And of course,
these prices don’t apply for those who have the train pass. The
train fares in Japan are fairly standardized, which explains the
reason that train fares are pretty similar with each other.

The starting point of this travelling salesman problem will
be Asakusa. The reason is Asakusa is the nearest location to
Narita International Airport, which where most tourist arrived
from.

C. Solving Time-Based Cost

Reducing the time-based cost matrix, we get the following
matrix.

ASA SHB SHJ GNZ AKB IKB

ASA ∞ 20 12 5 0 14

SHB 23 ∞ 0 9 15 4

SHJ 15 0 ∞ 10 6 0

GNZ 5 6 7 ∞ 0 9

AKB 0 12 3 0 ∞ 10

IKB 17 4 0 12 13 ∞

Fig. 8. Reduced time-based cost matrix.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

The cost of the root node is the sum of the subtrahend
which equals to 57. Applying the branch and bound method
explained in the second section of this paper, we get the
following state space tree.

Fig. 9. State space tree for time-based cost

The algorithm starts at the first node, which is ASA. Then it
will calculate the cost to travel to each node using the bound
function. The cost of travel to each node from ASA are the
following:

1. ASA  SHB: 77

2. ASA  SHJ: 77

3. ASA  GNZ: 62

4. ASA  AKB: 62

5. ASA  IKB: 71

Because GNZ and AKB has the least cost among five of
them, and GNZ appears before AKB, it will expand on GNZ
first. It will then calculate the cost of each unvisited nodes.
Continue on after expanding GNZ, it will then expand on
AKB, since it has the least cost. After that, it will expand on
GNZ with 68 cost, then IKB with 71 cost, then all the nodes
with 77 cost which none of them reach a goal node.

At this point there are two 78 cost node which is SHB and
SHJ on level 2. Expanding the SHB node will then reach a goal
node and provide us with a solution with a total cost of 78.
Because a goal node has been reached, it will then eliminate all
the nodes with a cost more than 78. The only node available
left is the SHJ on level 2. Expanding this node will also reach a
goal node with a total cost of 78, equal to the previous solution.

Now that the algorithm is done, there are two solutions to
this problem. First route is Asakusa  Ginza  Shibuya 
Ikebukuro  Akihabara  Shinjuku  Asakusa. The second
route is Asakusa  Akihabara  Shinjuku  Ikebukuro 
Shibuya  Ginza  Asakusa. Both of them has a total travel
time of 78 minute.

D. Solving Price-Based Cost

Reducing the price-based cost matrix, we get the following
matrix.

ASA SHB SHJ GNZ AKB IKB

ASA ∞ 80 80 30 0 80

SHB 80 ∞ 0 30 30 30

SHJ 80 0 ∞ 30 30 0

GNZ 30 30 30 ∞ 0 30

AKB 0 30 30 0 ∞ 80

IKB 80 30 0 30 80 ∞

Fig. 10. Reduced price-based cost matrix.

The cost of the root node is the sum of the subtrahend
which equals to 1020. Applying the branch and bound method
explained in the second section of this paper, we get the
following state space tree.

Fig. 11. State space tree for price-based cost

Same as the previous calculation, the algorithm starts at
ASA which then expands to its adjacent nodes. The cost of
travel to each node from ASA are the following:

1. ASA  SHB: 1100

2. ASA  SHJ: 1160

3. ASA  GNZ: 1050

4. ASA  AKB: 1050

5. ASA  IKB: 1100

Expands the least cost node which are GNZ and AKB. All
the active nodes from the expansion cost more than 1100,
which means expand on SHB and IKB on the first level. After
that, we have 4 nodes with the cost of 1110 with two of those
reaching a goal node provide us with the solution. After one of
the branches reached a goal node, it will then eliminate all the
nodes with the cost more than 1110. It then expands on the
other 1110 node which reached another goal node.

The first solution is Asakusa  Ginza  Ikebukuro 
Shinjuku  Shibuya  Akihabara  Asakusa. And the
second solution is Asakusa  Akihabara  Shibuya 
Shinjuku  Ikebukuro  Ginza  Asakusa. Both of them has
a total ticket price of 1.110 yen.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

E. Checking the Solution with a Python Program

All the calculations to find the solution in the previous
section were done manually and are prone to calculation
mistakes. To make sure that the solutions found in the previous
section are correct, I will check it using a Python Program from
Geeks for Geeks.

The program has a different bound function. Instead of
using reduced cost matrix to determine the cost to travel, they
use the complete tour cost bound function. In short, it
calculates the sum of two minimum edges cost of all the nodes.
This shouldn’t be a problem as the result should be the
identical to each other if the calculations were correct.

Given the following index
1. 0 : Asakusa
2. 1 : Shibuya
3. 2 : Shinjuku
4. 3 : Ginza
5. 4 : Akihabara
6. 5 : Ikebukuro

Inputting the time-based cost table into the program, we
were given the following result.

The result from the previous section matches with the one
from the python program. Asakusa  Ginza  Shibuya 
Ikebukuro  Akihabara  Shinjuku  Asakusa.

Inputting the price-cost matrix into the program, we get the
following result.

This solution also matches with out first calculated
solution. Asakusa  Ginza  Ikebukuro  Shinjuku 
Shibuya  Akihabara  Asakusa.

The problem with this program is that it only shows one
solution to the program even if there are more than one
solution. To check the other solution, we can change the order
of the matrix by swapping Ginza with Akihabara, which makes
the index the following.

0 : Asakusa
1 : Shibuya
2 : Shinjuku
3 : Akihabara
4 : Ginza
5 : Ikebukuro

Inputting the time-based cost table into the program, we
were given the following result.

The second solution also matched with the program’s
solution as index 3 is now Akihabara and index 4 is Ginza.

Asakusa  Akihabara  Shinjuku  Ikebukuro  Shibuya
 Ginza  Asakusa.

Inputting the price-based cost table into the program, we
were given the following result.

Which matches with the second solution Asakusa 
Akihabara  Shibuya  Shinjuku  Ikebukuro  Ginza 
Asakusa. All four of them also resulted in equal cost, which is
78 minutes for the time-based cost and 1110 yen for the price-
based cost.

IV. RESULT AND CONCLUSION

A. Result

Based on the previous calculation we have 4 solutions, two
for each cost type to travel around the six selected places.

Time-based cost

First solution: Asakusa  Ginza  Shibuya  Ikebukuro
 Akihabara  Shinjuku  Asakusa

Second solution: Asakusa  Akihabara  Shinjuku 
Ikebukuro  Shibuya  Ginza  Asakusa

Price-based cost

First solution: Asakusa  Ginza  Ikebukuro  Shinjuku
 Shibuya  Akihabara  Asakusa

Second solution: Asakusa  Akihabara  Shibuya 
Shinjuku  Ikebukuro  Ginza  Asakusa

The solutions found here is a separate solution of the two
cost. To find the best solution for both time and price cost, we
would need to combine both cost into a single cost matrix.
Adding them both directly won’t give the correct data since
both have a different scale, so finding it would need further
calculation.

B. Conclusion

Branch and bound algorithm is a combination of other
pathfinding algorithm, such as Breadth First Search algorithm
and least cost search. It can also be compared to exhaustive
search with some improvement to prevent it from searching the
whole branch. The worst-case complexity for branch and
bound algorithm is exponential (O(n2)), however the average
complexity is significantly lower.

Using a branch and bound algorithm manually isn’t the best
option since you need to do a calculation for every node.
Especially in this travelling salesman problem using the
reduced cost matrix bound function, where making the matrix
itself takes quite a bit of time. Additionally, the worst-case
scenario is exploring the whole state space tree.

Nevertheless, branch and bound algorithm is good for a
program since it’s a repeated calculation for every node in the
state space tree.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

CALCULATION PROOF

As mentioned before, the calculations done on this paper
are done manually. Here is the link to the spreadsheet I used to
save my calculation results.

https://drive.google.com/file/d/1B2nyo7vI4NbnKT7mDiaL
TkO_uoJTo3TB/view?usp=sharing

The data in the spreadsheet is stored similar to a horizontal
tree. The tree starts on the left side of the spreadsheet then
expands to the right. It is also color-coded for the node cost.

ACKNOWLEDGMENT

I would like to express my gratitude towards Allah for all
the grace and blessings. I would also like to give my thanks to
Prof. Ir. Dwi Hendratmo Widyantoro, M.Sc., Ph.D. and Dr. Ir.
Rinaldi, M.T. the lecturers of Algorithm Strategy class at ITB
for all the knowledge. Moreover, I’m grateful for the support
given by my friends and family.

REFERENCES
[1] R. Munir, “Algoritma Branch and Bound”, 2021,

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Branchand-Bound-2021-Bagian2.pdf

[2] GeeksforGeeks Team, “Travelling Salesmen Problem using Branch and
Bound”, taken from https://www.geeksforgeeks.org/traveling-salesman-
problem-using-branch-and-bound-2/, accessed May 10, 2021

[3] Japan-guide Team, “Tokyo”, taken from https://www.japan-
guide.com/e/e2164.html, accessed May 9, 2021

[4] N. Thakoor, V. Devarajan and J. Gao, "Computation complexity of
branch-and-bound model selection," 2009 IEEE 12th International
Conference on Computer Vision, 2009.

STATEMENT

I hereby declare that the paper I have written is my own
writing, not an adaptation or translation of someone else's

paper, and not plagiarized.

Bandung, 11th May 2021

Muhammad Iqbal Sigid - 13519152

